

The Münster TPC – design, DAQ and processing of a dual-phase TPC

Institut für Kernphysik Münster, October 10th, 2015

Axel Buß

Westfälische Wilhelms-Universität Münster

Email: a_buss09@uni-muenster.de

- Functionality of a dual phase TPC
- Setup of the Münster TPC
- Calibration of the photomultiplier tubes (PMTs)
- Conclusion and outlook

WESTFÄLISCHE

MÜNSTER

Motivation of direct dark matter detection WILHELMS-UNIVERSITÄT and to build an institutional TPC

- WIMP (weakly interacting massive ulletparticle) as a candidate for dark matter
- Research on direct dark matter • detection in various experiments (XENON, LUX, CDMS, EDELWEISS, CRESST, ...)

Functionality of a dual phase time projection chamber (TPC)

 Liquid <u>and</u> gaseous xenon in a cylindrical detector

 \rightarrow Dual phase TPC

- Arrays of photomultipliers (PMTs) at top and bottom
- Surface of liquid xenon
 1-2 centimeters below top
 PMTs

Functionality of a dual phase TPC

- Scintillation on electronic or nuclear recoil
 - \rightarrow S1 signal (short)
- More efficient light collection at the bottom due to (total) reflection at the surface of the liquid xenon
- PTFE (Teflon[™]) walls with high reflection properties in the VUV spectrum (178nm scintillation wavelength)

 $\chi + Xe \rightarrow \chi + Xe^*$ $Xe^* + Xe + Xe \rightarrow Xe_2^* + Xe$ $Xe_2^* \rightarrow 2Xe + h\nu$

Creation of secondary signal S2

- Ionization of Xe emits electrons
- Electrons drift with constant velocity of ~1.7mm/µs @ 1kV/cm towards surface due to high electric field
- Cathode potential: ~ -17kV
- Drift time \rightarrow z position

$$\chi + Xe \rightarrow Xe^{+} + e^{-} + \chi$$
$$Xe^{+} + Xe \rightarrow Xe_{2}^{+}$$
$$Xe_{2}^{+} + e^{-} \rightarrow Xe^{**} + Xe$$
$$Xe^{**} \rightarrow Xe^{*} + heat$$

Creation of secondary signal S2

- Within gaseous phase secondary scintillation of Xe due to stronger electric field (~10 kV/cm) and accelerated electrons
 - \rightarrow S2 signal (wide)
- Hit pattern \rightarrow xy position
- 3D position reconstruction
- Anode potential:
 - ~ +4kV

The Münster time projection chamber (TPC)

- Internal components
 - 14 photo multiplier tubes
 - glass fiber for LED calibration
- Dimensions:
 - inner diameter: 80 mm
 - maximum drift length: 170 mm
 - Total xenon amount: ~3kg

The Münster time projection chamber (TPC)

- Internal components
 - 14 photo multiplier tubes
 - glass fiber for LED calibration
- Dimensions:
 - inner diameter: 80 mm
 - maximum drift length: 170 mm
 - Total xenon amount: ~3kg

The Münster time projection chamber (TPC)

- Internal components
 - 14 photo multiplier tubes
 - glass fiber for LED calibration
- Dimensions:
 - inner diameter: 80 mm
 - maximum drift length: 170 mm
 - Total xenon amount: ~3kg

Photomultiplier tube (PMT)

- Emission of electrons due to the photoelectric effect
- Bialkali compounds as cathode material for high quantum efficiency (30% at 175nm)

 $Q.E. = \frac{n_{detected photons}}{n_{incoming photons}}$

 Multiple dynodes (10) with high secondary electron emission coefficient (gain)

 $gain = \frac{N \cdot e_{detected}}{e_{photo}} \approx 2 \cdot 10^6 @ 800 \,\mathrm{V}$

• High time resolution (O(1ns))

Gain calibration

Gain calibration

Histogram of the electron output

Credit: Julian Blanke

Credit: Julian Blanke

Axel Buß	Institut für Kernphysik, Münster

- Experimental TPC in Münster for developing new techniques large TPCs might benefit from
- Gain calibration of PMTs at room temperature with external LED <u>Outlook:</u>
 - Refill the TPC after upgrade
 - \rightarrow Measurements and analysis:
 - Investigate S2/S1 signal ratio with different drift fields
 - 3D reconstruction
 - Characterize detector and compare it to Monte Carlo simulation (GEANT4)
 - Internal and external energy calibration

Thanks for your attention

Data Acquisition (DAQ)

- Data Acquisition by 2 CAEN1724© flash ADCs with FPPDAQ
- Trigger via <u>external function</u> <u>generator</u> or internal threshold
- Zero length encoding (ZLE) limits the amount of raw data
- Data structure:
 - Event: contains for each channel one waveform
 - Waveform: list of ADC samples

Scintillation of xenon

Excitation or ionization of Xe atoms •

Excitation:

$$\chi + Xe \rightarrow \chi + Xe^{*}$$

$$Xe^{*} + Xe + Xe \rightarrow Xe_{2}^{*} + Xe$$

$$Xe_{2}^{*} \rightarrow 2Xe + h\nu$$
Ionization:

$$\chi + Xe \rightarrow Xe_{2}^{+} + e^{-} + \chi$$

$$Xe^{+} + Xe \rightarrow Xe_{2}^{+}$$

$$Xe_{2}^{+} + e^{-} \rightarrow Xe^{**} + Xe$$

$$Xe_{2}^{*} + Xe \rightarrow Xe_{2}^{*} + Xe$$

$$Xe^{**} \rightarrow Xe^{*} + heat$$
Not available due
$$Xe^{*} + Xe + Xe \rightarrow Xe_{2}^{*} + Xe$$

$$Xe_{2}^{*} \rightarrow 2Xe + h\nu$$

to

Data Acquisition (DAQ)

- Data Acquisition by 2 CAEN1724© flash ADCs with FPPDAQ
- Trigger via external function
 generator or internal threshold
- Zero length encoding (ZLE) limits the amount of raw data
- Data structure:
 - Event: contains for each channel one waveform
 - Waveform: list of ADC samples

Hitfinding

- Hitfinding: a different approach as in Xerawdp
- Hit: signal over a given threshold of about 4-8 sigma above baseline for <u>each individual channel</u>

- Coincidental hits are classified into peaks via a clustering plug-in
 - Peak as a sum of all contributing hits (witness)
- Clustering is followed by calculation of peak properties (>20):
 - Height
 - Area
 - Left and right boundary
 - n_contributing_channels

- Excitation or Ionization dependent on primary signal
- Electronic recoil:
 - Relatively more Ionization \rightarrow High S2/S1 signal ratio
- Nuclear recoil:
 - Less Ionization \rightarrow Low S2/S1 signal ratio
 - \rightarrow Particle identification

- Xenon as liquid scintillator (178nm wavelength)
- Heaviest non-radioactive noble gas (atomic number: 54)
 - \rightarrow WIMP cross section increases with A^2

 \rightarrow High self-shielding

- Low activity of radioactive isotopes
- Relatively equal abundance of even and odd isotopes
 → detection of spin-dependent interactions possible ∠
- Easy cryogenics (-100° C)
- As a liquid easily scalable

