KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Experimental High-Energy Astroparticle Physics

Andreas Haungs haungs@kit.edu **Astroparticle Physics**

dark matter

neutrino properties

atmospheric neutrinos

physics

particle

solar neutrinos

gravitational waves

magnetic monopoles

cosmic rays

gamma astronomy

neutrino astronomy

High-Energy Astroparticle Physics

Multi-messenger Approach in Astroparticle Physics

Cosmic rays, gammas and neutrinos are linked.

P,He,...Fe

GZK:

 $p + \gamma_{2.7K} \to \Delta^{+} (1232)$ $\to p + \pi^{0} \to p \gamma \gamma$ $\to n + \pi^{+} \to p e^{+} v$

Content:

- **1. Introduction in HEAP**
 - source-acceleration-transport
 - short history of cosmic ray research
 - extensive air showers
- 2. Ultra-High Energy Cosmic Rays
 - KASCADE, KASCADE-Grande and LOPES
 - Pierre Auger Observatory, JEM-EUSO
- 3. TeV-Gamma-rays & High-energy Neutrinos
 - TeV gamma rays

H.E.S.S., MAGIC, CTA

 high-energy neutrinos IceCube and KM3Net

Content:

- **1. Introduction in HEAP**
 - source-acceleration-transport
 - short history of cosmic ray research
 - extensive air showers
- 2. Ultra-High Energy Cosmic Rays
 - KASCADE, KASCADE-Grande and LOPES
 - Pierre Auger Observatory, JEM-EUSO
- 3. TeV-Gamma-rays & High-energy Neutrinos
 - TeV gamma rays

H.E.S.S., MAGIC, CTA

 high-energy neutrinos IceCube and KM3Net

ideal air-shower detector?

- •
- •
- •

what are the rôle of EAS-neutrinos?

- •
- •
- •
- why sources of cosmic rays are not known?
 - •

 - •

What are cosmic rays ?

= high-energy, extraterrestric particles

Warning:

c. 100.000 particles will pass your body in each 1 hour !!

primary cosmic rays: fully ionised atoms 98% (mainly Hydrogen and Helium nuclei) <1% Electrons <1% Photons

secondary cosmic rays: high energy particles generated in the atmosphere by primary cosmic rays

Charged Cosmic Rays: the energy spectrum

above 10¹⁴ eV : Only indirect measurements possible !

Charged Cosmic Rays: the energy spectrum

Charged Cosmic Rays: the energy spectrum

Cosmic rays – direct measurements

11

Direct measurements

 Acceleration by Supernova Remnants, only?

Cosmic rays – air shower measurements

Andreas Haungs

Cosmic Rays

Andreas Haungs

Cosmic Rays: Power of the sources?

Estimate of the energy density of cosmic rays: $\rho=1 \text{ eV/cm}^3$

Which power is needed to keep this energy density ? $L=V \rho / \tau \approx 5 \ 10^{40} \ erg/s$

With V as volume of our Galaxy (300pc thick, radius 15kpc) and $\tau =$ time of the particles in the volume: 6 10⁶ years

e.g.: Supernovae: 10⁵¹ erg/s energy release, 1 SN per 30 years and 10% efficiency in cosmic rays

similar power values: star winds of red super giants = 10⁵⁰ erg/s (problem: efficiency) or pulsars or binary systems

CR likely galactic origin!

1 erg = 10⁻⁷ J = 100 nJ 1 erg = 624.15 GeV = 6.2415 ×10¹¹ eV 1 erg = 1 g⋅cm²/s²

Cosmic Rays: Sources?

Galactic Sources:

- Supernovae
- Supernova remnants
 - Star formation regions ?
 - Microquasars ?
 - Pulsars ?
 - The Sun

17

Cosmic Rays: Sources?

Galactic Sources:

NVSS 2146+82

Cosmic Rays: Sources? Extragalactic Sources ?

- Aktive Galactic Nuclei (AGN) ? quasars, radio galaxis, galaxy clusters
- Merging Galaxies
- relic particles ?

superheavy GUT-particles, topological defects

19

C 1997 Wadsworth Publishing Company/IT

Cosmic Rays: Sources? Extragalactic Sources ?

Cosmic Rays: Acceleration? : general remarks

Acceleration in magnetic fields

Acceleration at shock fronts (Fermi-Acceleration)

The acceleration mechanisms requiresfollowing conditions:

1.) power law dependence of all particle types

 $dN(E) \propto E^{-x} dE$ with x=2.2-3

2.) energies up to 10²⁰ eV

3.) elemental composition similar to solar abundances

problem: storage period of particles in the acceleration zone have to be long (e.g. synchrotron) and the zone have to be stable.

Cosmic Rays: Fermi Acceleration

Fermi-mechanism 1st order at strong shock waves

simple calculation in lab system:
shock front with velocity V and
gas behind with velocity U → $\Delta E_1 = \frac{1}{2} m (v + (V - U))^2 - \frac{1}{2} m v^2$ $= \frac{1}{2} m (2v(V-U) + (V-U)^2)$ with v >> V,U and V>U
→ always head-on collisions!
→ energy gain $\Delta E/E = 2 (V-U) / v$

relativistic calculations and taking Into account the scatter angles: $\rightarrow \Delta E/E = 4/3 (V-U) / c$

(a) Shock front traveling at speed ${\bf U}$

(c) rest frame of downstream medium

(d) rest frame of upstream medium

22

→ classical kinematic describes how often particles pass the shock
 → escape probability is similar to the energy gain: P ≈ ε.

$\Rightarrow N(E) dE \propto E^{-2} dE \quad !!!$

(strong shocks are observed at supernova remnants)

Cosmic Rays: Acceleration > 100 TeV ?

idea: acceleration in Pulsars

Pulsar:

- remnant of a supernova explosion
- radius 10 km, density 6.10¹³g/cm² (density of nuclei) (neutron stars, decay of n are stopped)
- creation by gravity collaps but with conservation of the angular momentum:

→ $T_{Pulsar} = 1 - 30 \text{ ms}$ → very high magnetic fields: $B_{Star} = 0.1 \text{ Tesla}$ $B_{Pulsar} = 2.5 \cdot 10^8 \text{ Tesla}$

→very strong electrical fields by induction

Cosmic Rays: Acceleration > 100 TeV ?

idea: acceleration in AGN:

Centaurus A, HST optical and radio

problem: interaction of the accelerated particles inside the jet

TeV- gamma radiation from AGN's are observed (timely and spectral very variable)

Cosmic Rays: Acceleration summary

ILC (Int. Linear Collider) with 35 MV/m: Length of diameter of Saturn orbit

Cosmic Rays: Acceleration summary

Hillas-Diagramm:

Cosmic Rays: Acceleration summary

 $E_{max} = 10^{10} \text{ eV/n}$ acceleration in the sun: $E_{max} \approx 10^{14} \text{ eV/n}$ acceleration in Supernova shocks: $E_{max} \approx 10^{16} \text{ eV/n}$ acceleration at Supernova in a wind: $E_{max} \approx 10^{17} \text{ eV/n}$ reacceleration of 10¹⁴ eV/n in Pulsars: $E_{max} \approx 10^{18} \text{ eV/n}$ **Supernova in a wind + binary system:** $E_{max} \approx 10^{18} \text{ eV/n}$ extreme Pulsars (short rotation time): $E_{max} \approx 10^{19} \text{ eV/n}$ acceleration in AGNs, Radio-Jets:

Cosmic Rays: Acceleration summary

Exotic decays

Exotic UHECR Sources "Top Down"solutions (topological defects), SUSY, VHE Neutrinos, Monopoles, etc.

Cosmic Strings

Cosmic Rays: Transport

Transport through interstellar/intergalactic medium

Density at the interstellar medium: 1 particle per cm³ Density at the intergalactic medium: 6 particles per m³

Cosmic Rays: Transport

content of the ISM:

-) clouds -neutral or ionised H(He..)-gas -density ρ =10⁻²⁴ g/cm³ -interactions by particle collisions

-) magnetic fields $B=1-3 \ \mu G$ diffusion

-) microwave background 2.7K = 2.3 10⁻⁴ eV = 5.6 10¹⁰ Hz = 5 10⁻³ m Interactions by photo-pion production (= GZK)

Cosmic Rays: Transport Equation

Diffusion equation for relativistic particles:

$$dN_i/dt = d/dE[b_i(E)N_i(E)] + Q_i + \nabla(D_i\nabla N_i)$$

N_i = N_i(E,x,t) dE = number (density) of a specific particle i at the position x and time t in the energy range E+dE

 Q_i = injection rate of these particles into a volume dV

The particle gains (-) or looses (+) energy as −(dE/dt)=b(E) → dN(E)/dt = d/dE[b(E)N(E)] is the timely development of the particle spectrum → in the volume by energy gains and looses

additionally injection and escape to the volume by diffusion (dependent on particle density N_i)

 $\mathbf{D} = 1/3 \lambda \mathbf{v}$

 λ = free pathlength = 10g/cm² for protons in ISM = 3 g/cm² for iron in ISM

Cosmic Rays: Transport Equation

$dN_i/dt = d/dE[b_i(E)N_i(E)] + Q_i + \nabla(D_i\nabla N_i)$ - $N_i/\tau_i + \sum_{j>i} P_{ji}/\tau_j N_j$

effects of spallation: change (+ or -) of N_i

τ_i = lifetime of species i (attention: Lorentz-Dillation: increases lifetime)

 P_{ji} = probability that a collision creates a species j out of species i

→ explain the change of the slope from the source (γ =-2.0) to observation (γ =-2.7)

All calculations are in good agreement with the assumption of a halo built with high-energetic particles !!

Cosmic Rays: Transport: Leaky Box Model

,Confinement' in our Galaxy:

-) high energy particles pass ca. $5g/cm^2$ matter (from comparisons of spallation calculations with Measurements at low energies, e.g. Cr/Fe-ratio) -) average density in our Galaxy: N = 10^{-6} m⁻³

with $\lambda = \rho \cdot c \cdot t \Rightarrow$ $t_{esc} \approx 3 \cdot 10^6$ years escape time from Milky Way

(or larger, if longer confinements in less dense regions)

← proof that particles have scrumpled pathes, as straight path would need only 10⁴ years

Best description by the ,Leaky Box Model' = free diffusion inside the box, reflections at the edge of the box probability of transmission out of the box

 $dN / dt + N / t_{esc} = 0 \rightarrow N \propto exp(-t/t_{esc})$

Cosmic Rays transport at highest energies: GZK Greisen-Zatsepin-Kuzmin Effect

Pion photo production ($E_p > 5x10^{19}eV$ due to CMB) :

 $\mathbf{p} + \gamma \rightarrow \Delta^{+} \rightarrow \mathbf{p} + \pi^{0}$ $\mathbf{p} + \gamma \rightarrow \Delta^{+} \rightarrow \mathbf{n} + \pi^{+}$

Interaction length ~ 6 Mpc Energy loss ~ 20% / interaction

→ Nearby sources (<50 Mpc)

34

Cosmic Rays: History - 1910

~1900: Electroscopes discharge, even if they are shielded from radioactive sources
→ Rutherford: radioactivity at the walls, etc...

(γ-radiation and its absorption coefficient was known → after 80m in air only 50% → Eiffeltower at 330m: no radiation)

~1910: Theodor Wulf → at 330m: Ionisation decrease to 60%

The Jesuit padre Theodor Wulf clambers in the year 1910 the Paris Eiffel-Tower to find the source of the ionizing radiation in the Earth's Atmosphere.

Electrometer

Cosmic Rays: History - 1912

Victor Hess 1912: There are particles coming from ,outside' (Cosmos)

Finding: Ionisation increase with height ! (Hess reached 5000m)

Cosmic Rays: History – 1912-25

Start of the development of: Particle detectors – particle physics

Cloud chamber

- Gesättigte Atmosphäre: Luftmoleküle haben max. Menge d. Gasgemischs angelagert.
- Schnelle Expansion => Abkühlung => Übersättigung => Kondensation an Ladungen

37

Spark chamber

Cosmic Rays: History – 1930-40

==> First Detection of extended air-showers!

1936: coincidence measurements at the Jungfraujoch

Extensive Air Showers

Following years: separation of cosmic ray and particle (accelerator) physics

Cosmic Rays: History - 1958

The "first knee"

G.V.Kulikov & G.B.Khristiansen

Soviet Physics JETP Volume 35(8), No 3, March 1959

measured N_{ch} spectra

hodoscope counters in a 20x20 m² array

",the observed spectrum is a superposition of the spectra of particles of galactic and metagalactic origin"

Cosmic Rays: History - 1962

FIG. 1. Plan of the Volcano Ranch array in February 1962. The circles represent $3.3-m^2$ scintillation detectors. The numbers near the circles are the shower densities (particles/m²) registered in this event, No. 2-4834. Point "A" is the estimated location of the shower core. The circular contours about that point aid in verifying the core location by inspection.

The first event above 10²⁰eV

Volcano Ranch array,

New Mexico US

20 scintillators spaced in 147m

J. Linsley Phys.Rev.Lett. 10 146-148,1963

and in extreme forward direction!

Andreas Haungs

above 10¹⁴ eV :

41

EAS

Extensive Air Showers - schematic

Differences at the shower development in the Atmosphere hint to energy und mass of the incident primary particle.

EAS – hadronic interactions: nucleus-nucleus

Superposition model: Fe-nuclei (E) = 56 x proton (E/56) valid, since binding energy << energy of nucleons (< 8MeV << >100TeV) additive observables Q: $\langle Q^A(E) \rangle = A \cdot \langle Q^P(E/A) \rangle$

Fluctuations: $\sigma_{Q^A}(E) = \sigma_{Q^p}(E/A)/\sqrt{(A)}$

increasing A \rightarrow

more secondary particles with less energy → less electrons (after maximum), more muons
surviving hadrons
have less energy
larger deflection angles → flatter lateral distributions of the secondary particles

Extensive Air Showers

Sensitivity to energy and mass: Particle number and particle distributions: Longitudinal distributions.

Extensive Air Showers

Sensitivity to energy und mass:

Particle number and particle distributions: Lateral distributions

Extensive Air Showers

Particle Detection: Scintillators

Scintillation counter:

- Ionizing radiation generates light in the scintillators
- Light generates Electrons (photo effect)
- Electrons are multiplied (PMT)
- Number of electrons (charge) is counted

51

Water Cherenkov Detector

Cherenkov-Counter:

•Particle detector for charged particles named after physicist Pavel Cherenkov

•Principle: If the speed of charged particles in a medium exceeds the speed of light in this medium (e.g. water) they emit radiation (in optical light)

•The principle of a Cherenkov counter is based on the detection of this Cherenkov-radiation

Pavel Alekseyevich Cherenkov (1904-1990)

Water Cherenkov Detector

threshold: $\beta = v/c \ge 1/n$

i.e. Cherenkov-radiation, if $V_{particle} > C_{medium}$ In water: $n = v_{particle} > 0.75c$, i.e. muons E_{kin} > 60MeV, electrons E_{kin} > 0.3MeV **Fulfilled in air shower particles** Angle of emission: $\cos \theta = 1/n\beta [h/2p\lambda (1-1/n^2)]$

Fluorescence Light Detection

primary cosmic ray **UV** fluorescence **Charged particles excites** isotropic emission Nitrogen in atmosphere. electromagnetic shower **De-excitation: Fluorescence light** (isotropic) Cherenkov radiation forward emission S3. excited Emission of fluorescence Nitrogen higher energy S₂ 5 10312 / 5 10301 = 82.42 triplet states S₁ Energy $\lambda_{abs} \sim 15 \text{Km}$ absorbed 4÷5 y/m. exciting emitted light triplet Ne>10⁸ e fluorescence states light E~ 10¹⁸ eV phosphorescence S0ground state 0.45 0.5 wavelength (micron) Fly's Eye Utah 1982 300 400 nm

54

Radio Detection of EAS

- Characteristic energy for electrons is 30-100 MeV
- Charge separation in Earth's magnetic field
 electric dipole
- Gyration of electrons along a small arc
 emission of synchrotron radiation
- time varying charge excess in EAS
 electric dipole
- atmosphere's refraction index ≠ 1
 - Cherenkov like radio emission
- Electrons are in a shower disk of small thickness (2 m < one wavelength at 100 MHz)
 - → coherent emission
 - ➔ beamed into propagation direction

55

Content:

- **1. Introduction in HEAP**
 - source-acceleration-transport
 - short history of cosmic ray research
 - extensive air showers
- 2. Ultra-High Energy Cosmic Rays
 - KASCADE, KASCADE-Grande and LOPES
 - Pierre Auger Observatory, JEM-EUSO
- 3. TeV-Gamma-rays & High-energy Neutrinos
 - TeV gamma rays

H.E.S.S., MAGIC, CTA

 high-energy neutrinos IceCube and KM3Net

ideal air-shower detector?

- •
- •
- _
- •

what is the rôle of EAS-neutrinos?

- •
- •
- •
- why sources of cosmic rays are not known?
 - •

 - •

- ideal air-shower detector?
 - longitudinal sensitivity 100%
 - electron-muon separation
 - independent stations
- what is the rôle of EAS-neutrinos?
 - •
 - •
 - •
- why sources of cosmic rays are not known?
 - •
 - •
 - •

- ideal air-shower detector?
 - longitudinal sensitivity 100%
 - electron-muon separation
 - independent stations
- what is the rôle of EAS-neutrinos?
 - missing mass (reconstruction)
 - particle physics (oscillations)
 - background in neutrino detectors
- why sources of cosmic rays are not known?

- ideal air-shower detector?
 - longitudinal sensitivity 100%
 - electron-muon separation
 - independent stations
- what is the rôle of EAS-neutrinos?
 - missing mass (reconstruction)
 - particle physics (oscillations)
 - background in neutrino detectors
- why sources of cosmic rays are not known?
 - magnetic fields
 - leptonic/hadronic acceleration models
 - various source populations

Exercise with KCDC https://kcdc.ikp.kit.edu

LASCADE

osmic ray Data Centre

Exercise with KCDC

Determination of the Attenuation Length of the Electron Component in extensive air-showers

Attenuation Length Λ_e : describes the average decrease of the electron number N_e with increasing atmospheric depth X (at fixed primary energy)

 $\langle N_e(X) \rangle \propto \exp\left(-X/\Lambda_{N_e}\right)$

Why of interest? → Understanding of shower development → Test of hadronic interaction models → Composition measurements

You need: → KASCADE EAS-data from KCDC → Read/Analysis/fitting/plotting tools

