

Cosmic Rays and Extensive Air Showers

Ralph Engel Karlsruhe Institut für Technologie (KIT)

I Phenomenology of extensive air showers

Hadronic cascades

Electromagnetic showers: Heitler model

Electromagnetic showers: Cascade equations

Energy loss of electron:

$$\frac{\mathrm{d}E}{\mathrm{d}X} = -\alpha - \frac{E}{X_0}$$

Critical energy: $E_c = \alpha X_0 \sim 85 \,\mathrm{MeV}$ Radiation length: $X_0 \sim 36 \,\mathrm{g/cm^2}$

Cascade equations

$$\frac{\mathrm{d}\Phi_{e}(E)}{\mathrm{d}X} = -\frac{\sigma_{e}}{\langle m_{\mathrm{air}} \rangle} \Phi_{e}(E) + \int_{E}^{\infty} \frac{\sigma_{e}}{\langle m_{\mathrm{air}} \rangle} \Phi_{e}(\tilde{E}) P_{e \to e}(\tilde{E}, E) \mathrm{d}\tilde{E} + \int_{E}^{\infty} \frac{\sigma_{\gamma}}{\langle m_{\mathrm{air}} \rangle} \Phi_{\gamma}(\tilde{E}) P_{\gamma \to e}(\tilde{E}, E) \mathrm{d}\tilde{E} + \alpha \frac{\partial \Phi_{e}(E)}{\partial E}$$

$$X_{\max} \approx X_0 \ln\left(\frac{E_0}{E_c}\right) \qquad \qquad N_{\max} \approx \frac{0.31}{\sqrt{\ln(E_0/E_c) - 0.33}} \frac{E_0}{E_c}$$

Mean longitudinal shower profile

Calculation with cascade Eqs.

Photons

- Pair production
- Compton scattering

Electrons

- Bremsstrahlung
- Moller scattering

Positrons

- Bremsstrahlung
- Bhabha scattering

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Energy spectra of secondary particles

Number of photons divergent

- Typical energy of electrons and positrons $E_c \sim 80 \text{ MeV}$
- Electron excess of 20 30%
- Pair production symmetric
- Excess of electrons in target

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Muon production in hadronic showers

Assumptions:

- cascade stops at $E_{part} = E_{dec}$
- each hadron produces one muon

Primary particle proton

 π^0 decay immediately

 Π^{\pm} initiate new cascades

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
$$\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.82 \dots 0.95$$

Superposition model

Proton-induced shower

$$N_{\rm max} = E_0/E_c$$

$$X_{\rm max} \sim \lambda_{\rm eff} \ln(E_0)$$

$$N_{\mu} = \left(\frac{E_0}{E_{\rm dec}}\right)^{\alpha} \qquad \alpha \approx 0.9$$

Assumption: nucleus of mass A and energy E_0 corresponds to A nucleons (protons) of energy $E_n = E_0/A$

$$N_{\rm max}^A = A\left(\frac{E_0}{AE_c}\right) = N_{\rm max}$$

$$X_{\text{max}}^{A} \sim \lambda_{\text{eff}} \ln(E_0/A)$$
$$N_{\mu}^{A} = A \left(\frac{E_0}{AE_{\text{dec}}}\right)^{\alpha} = A^{1-\alpha} N_{\mu}$$

Superposition model: correct prediction of mean Xmax

iron nucleus

Glauber approximation (unitarity)

$$n_{\text{part}} = \frac{\sigma_{\text{Fe}-\text{air}}}{\sigma_{\text{p}-\text{air}}}$$

Superposition and semi-superposition models applicable to inclusive (averaged) observables

Electron and muon numbers of showers at ground

Dominating uncertainty of composition and energy measurements due to hadronic interaction models

Electromagnetic energy and energy transfer

Fraction of energy transferred to em. shower

(RE, Pierog, Heck, ARNPS 2011)

Only small influence of the modelling of hadronic interactions

Longitudinal shower profile

(x10⁹)

Number of charged particles

Number of charged particles (x10⁹)

2000

1000

900

Mean depth of shower maximum

⁽RE, Pierog, Heck, ARNPS 2011)

Different slopes for em. and hadronic showers

⁽RE, Pierog, Heck, ARNPS 2011)

Derivation of elongation rate theorem

Elongation rate theorem

$$D_e^{\text{had}} = X_0(1 - B_n - B_\lambda)$$

(Linsley, Watson PRL46, 1981)

$$B_n = \frac{d\ln n_{\rm tot}}{d\ln E}$$

Large if multiplicity of high energy particles rises very fast, **zero in case of scaling**

$$B_{\lambda} = -\frac{1}{X_0} \frac{d\lambda_{\text{int}}}{d\ln E}$$

Large if cross section rises rapidly with energy

Note: $D_{10} = \log(10)D_e$

2 Modeling hadronic interactions at high energy

Expectations from uncertainty relation

Assumptions:

- protons built up of partons
- partons liberated in collision process
- partons fragment into hadrons (pions, kaons,...) after interaction
- interaction viewed in c.m. system (other systems equally possible)

Heisenberg uncertainty relation

$$\Delta x \, \Delta p_x \simeq 1$$

Longitudinal momenta of secondaries

$$\langle p_{\parallel}
angle \sim \Delta p_{\parallel} \approx rac{1}{R'} pprox rac{1}{5} E_p$$

Transverse momenta of secondaries

$$\langle p_{\perp} \rangle \sim \Delta p_{\perp} \sim \frac{1}{R} \approx 200 \,\mathrm{MeV}$$

QCD-inspired interpretation: color flow model

One-gluon exchange: two color fields (strings)

Simplest case: e⁺e⁻ annihilation into quarks

Confinement in QCD

$$V(r) = -\frac{4}{3}\frac{\alpha_{\rm s}}{r} + \lambda r$$

String fragmentation

Kinematic distribution of secondary particles

Ansatz

- Lorentz-invariant for transformations along string
- Transverse momenta result of vacuum fluctuations

$$dN = f(p) \ \delta(p^2 - m^2) \ d^4p$$

$$= f(p) \ \frac{d^3p}{2E}$$

$$= \frac{1}{2} f(p) \ d^2p_{\perp} \ \frac{dp_{\parallel}}{E}$$

$$= \frac{1}{2} f_{\perp}(p_{\perp}) \ d^2p_{\perp} \ f_{\parallel}(y) \ dy$$

$$\sim \exp(-\beta p_{\perp}^2) \ d^2p_{\perp} \ f_{\parallel}(y) \ dy$$
Lorentz invariant function
$$p = (E, \vec{p})$$
Separation of long. and transverse degrees of freedom
New variable
$$\frac{dp_{\parallel}}{E} = dy$$

$$\beta^{-1} \dots \text{ effective temperature}$$

Final state particles: two-string model

Rapidity and pseudorapidity

Rapidity

$$y = \frac{1}{2} \ln \frac{E + p_{\parallel}}{E - p_{\parallel}} = \ln \frac{E + p_{\parallel}}{m_{\perp}}$$

Transverse mass $m_{\perp} = \sqrt{m^2 + p_{\perp}^2}$

Rapidity of massless particles

$$y = \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta} = -\ln \tan \frac{\theta}{2}$$

Experiments without particle identification: **pseudorapidity**

$$\eta = -\ln\tan\frac{\theta}{2}$$

Standard color flow and final state particles

Other predicted color flow configurations

Rapidity y

Particle production spectra (i)

Fluctuations: Generation of sea quark anti-quark pair and leading/excited hadron

Leading particle effect

Particle production spectra (i)

Fluctuations: Generation of sea quark anti-quark pair and leading/excited hadron

)

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Particle production spectra (ii)

X_F

Interaction of hadrons with nuclei

Glauber approximation:

$$\sigma_{\text{inel}} = \int d^2 \vec{b} \left[1 - \prod_{k=1}^A \left(1 - \sigma_{\text{tot}}^{NN} T_N(\vec{b} - \vec{s}_k) \right) \right] \approx \int d^2 \vec{b} \left[1 - \exp\left\{ -\sigma_{\text{tot}}^{NN} T_A(\vec{b}) \right\} \right]$$

$$\sigma_{\rm prod} \approx \int d^2 \vec{b} \left[1 - \exp\left\{ -\sigma_{\rm ine}^{NN} T_A(\vec{b}) \right\} \right]$$

Coherent superposition of elementary nucleonnucleon interactions

String configuration for nucleus as target

Transition from intermediate to high energy

Intermediate energy:

- *E*_{lab} < 1,500 GeV
- *E*_{cm} < 50 GeV
- dominated by valence quarks

Lifetime of fluctuations
$$\Delta t \approx \frac{1}{\Delta E} = \frac{1}{\sqrt{p^2 + m^2} - p} = \frac{1}{p(\sqrt{1 + m^2/p^2} - 1)} \approx \frac{2p}{m^2}$$

High energy regime:

- *E*_{lab} > 21,000 GeV
- *E*_{cm} > 200 GeV
- dominated by gluons and sea quarks

Transition from intermediate to high energy

Intermediate energy:

- *E*_{lab} < 1,500 GeV
- *E*_{cm} < 50 GeV
- dominated by valence quarks

Lifetime of fluctuations
$$\Delta t \approx \frac{1}{\Delta E} = \frac{1}{\sqrt{p^2 + m^2} - p} = \frac{1}{p(\sqrt{1 + m^2/p^2} - 1)} \approx \frac{2p}{m^2}$$

High energy regime:

- *E*_{lab} > 21,000 GeV
- *E*_{cm} > 200 GeV
- dominated by gluons and sea quarks

Scattering of quarks and gluons: jet production

Interpretation within perturbative QCD

Soft interaction: no large momentum transfer Hard interaction: large momentum transfer ($|t| > 2 \text{ GeV}^2$)

Minijet production in interaction models

$$\sigma_{QCD} = \sum_{i,j,k,l} \frac{1}{1 + \delta_{kl}} \int dx_1 \, dx_2 \, \int_{p_{\perp}^{\text{cutoff}}} dp_{\perp}^2 \, f_i(x_1, Q^2) \, f_j(x_2, Q^2) \, \frac{d\sigma_{i,j \to k,l}}{dp_{\perp}}$$

Rapid increase of gluon density at low x

Poissonian probability distribution

Peripheral collision: only very few parton-pairs interacting

 $P_n = \frac{\langle n_{\text{hard}}(\vec{b}) \rangle^n}{n!} \exp\left(-\langle n_{\text{hard}}(\vec{b}) \rangle\right)$

Central collision: many parton-pairs interacting

Need to know mean number of interactions as function of impact parameter

mean number of interactions for given impactparameter of collision

Problem: Very high parton densities (saturation)

Saturation:

- parton wave functions overlap
- number of partons does not increase anymore at low x
- extrapolation to very high energy unclear

Simple geometric criterion

Black disk scenario of high energy scattering ?

Comparison of high energy interaction models

DPMJET II.5 and III (Ranft / Roesler, RE, Ranft, Bopp)	 universal model saturation for hard partons via geometry criterion HERA parton densities
EPOS (Pierog, Werner)	 universal model saturation by RHIC data parametriztions custom-developed parton densities
QGSJET 01 (Kalmykov, Ostapchenko)	 no saturation corrections old pre-HERA parton densities replaced by QGSJET II
QGSJET II.03 and II.04 (Ostapchenko)	 saturation correction for soft partons via pomeron-resummation custom-developed parton densities
SIBYLL 2.1 (Engel, RE, Fletcher, Gaisser, Liþari, Stanev)	 saturation for hard partons via geometry criterion HERA parton densities

SIBYLL 2.1: modification of minijet threshold

No dependence on impact parameter !

SIBYLL: simple geometric criterion

$$\pi R_0^2 \simeq \frac{\alpha_s(Q_s^2)}{Q_s^2} \cdot xg(x, Q_s^2)$$

$$xg(x,Q^2) \sim \exp\left[\frac{48}{11 - \frac{2}{3}n_f} \ln \frac{\ln \frac{Q^2}{\Lambda^2}}{\ln \frac{Q^2}{\Lambda^2}} \ln \frac{1}{x}\right]^{\frac{1}{2}}$$

SIBYLL: $p_{\perp}(s) = p_{\perp}^{0} + 0.065 \text{GeV} \exp \left\{ 0.9 \sqrt{\ln s} \right\}$

QGSJET II: high parton density effects

Re-summation of enhanced pomeron graphs

(Ostapchenko, PLB 2006, PRD 2006)

EPOS I.9 – high parton density effects

$$b_0 = w_B \sqrt{\sigma_{\text{inel}pp}/\pi}$$
 $z_0 = w_Z \log s/s_M,$
 $z'_0 = w_Z \sqrt{(\log s/s_M)^2 + w_M^2},$

Uncertainty in energy extrapolation !

3 Applications (putting things together)

Mean depth of shower maximum

⁽RE, Pierog, Heck, ARNPS 2011)

Elongation rates and model features

Elongation rate theorem $D_{10}^{\text{had}} = \ln 10 X_0 (1 - B_n - B_\lambda)$ (Linsley, Watson PRL46, 1981) factor ~ 87 g/cm² $B_n = \frac{d\ln n_{\rm tot}}{d\ln E}$ Large if multiplicity of high energy particles rises very fast, **zero in** case of scaling $B_{\lambda} = -\frac{1}{X_0} \frac{d\lambda_{\text{int}}}{d\ln E}$ Large if cross section rises rapidly with energy

Electron and muon numbers of showers at ground

Dominating uncertainty of composition and energy measurements due to hadronic interaction models

Modification of ratio of neutral to charged pions

 $N_{\mu} = \left(\frac{E_0}{E_{\rm dec}}\right)^{\alpha}$

 $\alpha = \frac{\ln(n_{\rm ch})}{\ln(n_{\rm tot})}$

Particle ratios: quark counting and SU(3) symmetry !

EPOS I.6x: higher rate of baryon-antibaryon pairs

4 What do we learn from LHC

The Large Hadron Collider (LHC)

Fixed target vs. collider experiments

Scaling of interaction energies

Fixed target: Forward direction (beam fragmentation region) covered by detectors **Colliders:** Beam direction measurements very challenging (if not impossible)

Energy spectrum and collider energies

LHC data probe the region beyond the knee

 $\eta = -\ln \tan \frac{1}{2}$

LHC: Exotic scenarios for knee very unlikely, model predictions bracket LHC data on secondary particle multiplicity

(D'Enterria at al. Astropart Phys 35, 2011)

Exotic models for the knee

New physics: scaling with nucleon-nucleon cms energy

LHC data probe the region beyond the knee

Cross section measurements at LHC

No big surprise given Tevatron measurements, but re-tuning of model cross sections needed

$$\frac{\Delta p}{p} = \xi > 5 \times 10^{-6}$$

$$\sigma_{ATLAS}=60.3\pm0.05\pm0.5\pm2.1\text{mb}$$

N _{trk} Pt (MeV)	3 200	4 200	3 250	4 250	$\sigma_{ m tot}$
<u>CMS</u>	<u>59.7</u>	<u>58.6</u>	<u>58.9</u>	<u>57.3</u>	
Q-11-03	65.2	64.6	63.0	62.0	77.5
SYBILL-2.1	71.5	71.0	70.2	69.3	79.6

(CMS, DIS Workshop, Brookhaven)

$$\sigma_{\text{ALICE}} = 72.7 \pm 1.1 \pm 5.1 \text{mb}$$

LHC data: Baryon production lower than assumed

(Riehn et al., 2012)

5 What do we learn from air showers

Cross section measurement with air showers

Universality features of high-energy showers (i)

Simulated shower profiles

Profiles shifted in depth

Depth of X_1 and X_{max} strongly correlated, use X_{max} for analysis

Selection of protons: select very deep showers

High-energy frontier: proton-air cross section

(Pierre Auger Collab. 1107.4804, Phys. Rev. Lett. 2012)

Several shower observables

Discrepancy: shower profile and muons at ground

Enhancement of muon number in air showers

1 Baryon-Antibaryon pair production (*Pierog, Werner*)

- Baryon number conservation
- Low-energy particles: large angle to shower axis
- Transverse momentum of baryons higher
- Enhancement of mainly low-energy muons

2 Leading particle effect for pions (Drescher, Ostapchenko)

- Leading particle for a π could be ρ^0 and not π^0
- Decay of ρ^0 almost 100% into two charged pions

3 Chiral symmetry restoration (Farrar, Allen)

- Proton primaries, applies above energy threshold
- Pion production suppressed relative to baryons
- Large inelasticity of the events
- Faster increase of total cross section (reduction of fluctuations)

Leading particle for π -air interactions

Summary of role of hadronic interactions

Electrons

68

Muon production at large lateral distance

Muon observed at 1000 m from core

(Maris et al. ICRC 2009)