

Cosmic Rays and Extensive Air Showers

Ralph Engel Karlsruhe Institut für Technologie (KIT)

1 Phenomenology of extensive air showers

Hadronic cascades

Electromagnetic showers: Heitler model

Electromagnetic showers: Cascade equations

Energy loss

$$
\frac{\mathrm{d}E}{\mathrm{d}X}=-\alpha-\frac{E}{X_0}
$$

Critical energy: $E_c = \alpha X_0 \sim 85 \,\text{MeV}$ **Radiation length:** $X_0 \sim 36 \text{ g/cm}^2$

Cascade equations

$$
\frac{d\Phi_e(E)}{dX} = -\frac{\sigma_e}{\langle m_{\text{air}}\rangle} \Phi_e(E) + \int_E^{\infty} \frac{\sigma_e}{\langle m_{\text{air}}\rangle} \Phi_e(\tilde{E}) P_{e\to e}(\tilde{E}, E) d\tilde{E}
$$

$$
+ \int_E^{\infty} \frac{\sigma_\gamma}{\langle m_{\text{air}}\rangle} \Phi_\gamma(\tilde{E}) P_{\gamma\to e}(\tilde{E}, E) d\tilde{E} + \alpha \frac{\partial \Phi_e(E)}{\partial E}
$$

$$
X_{\text{max}} \approx X_0 \ln\left(\frac{E_0}{E_c}\right) \qquad N_{\text{max}} \approx \frac{0.31}{\sqrt{\ln(E_0/E_c) - 0.33}} \frac{E_0}{E_c}
$$

Mean longitudinal shower profile

Calculation with cascade Eqs.

Photons

- Pair production
- Compton scattering

Electrons

- Bremsstrahlung
- Moller scattering

Positrons

- Bremsstrahlung
- Bhabha scattering

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Energy spectra of secondary particles

Number of photons divergent

- Typical energy of electrons and positrons $E_c \sim 80$ MeV
- Electron excess of 20 30%
- Pair production symmetric
- Excess of electrons in target

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Muon production in hadronic showers

Assumptions:

- cascade stops at $E_{part} = E_{dec}$
- each hadron produces one muon

Primary particle proton

 π^0 decay immediately

π± initiate new cascades

$$
N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}
$$

$$
\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.82 \dots 0.95
$$

Superposition model

Proton-induced shower

$$
N_{\text{max}} = E_0/E_c
$$

\n
$$
X_{\text{max}} \sim \lambda_{\text{eff}} \ln(E_0)
$$

\n
$$
N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha} \qquad \alpha \approx 0.9
$$

Assumption: nucleus of mass *A* and energy *E0* corresponds to *A* nucleons (protons) of energy *En = E0/A*

$$
N_{\text{max}}^A = A \left(\frac{E_0}{AE_c}\right) = N_{\text{max}}
$$

$$
X_{\text{max}}^{A} \sim \lambda_{\text{eff}} \ln(E_0/A)
$$

$$
N_{\mu}^{A} = A \left(\frac{E_0}{AE_{\text{dec}}}\right)^{\alpha} = A^{1-\alpha} N_{\mu}
$$

Superposition model: correct prediction of mean Xmax

iron nucleus

Glauber approximation (unitarity)

$$
n_{part} = \frac{\sigma_{Fe-air}}{\sigma_{p-air}}
$$

Superposition and semi-superposition models applicable to inclusive (averaged) observables

Electron and muon numbers of showers at ground

vertical showers of 1014 *to 2014* **the 11 and 11 and** measurements due to hadronic interaction models Dominating uncertainty of composition and energy

Electromagnetic energy and energy transfer

Fraction of energy transferred to em. shower

(RE, Pierog, Heck, ARNPS 2011)

Only small influence of the modelling of hadronic interactions

Longitudinal shower profile

Mean depth of shower maximum

⁽RE, Pierog, Heck, ARNPS 2011) 15

Different slopes for em. and hadronic showers

Derivation of elongation rate theorem

Elongation rate theorem

$$
X_0 = 36 \text{ g/cm}^2
$$

$$
D_e^{\text{had}} = X_0(1 - B_n - B_\lambda)
$$

(Linsley, Watson PRL46, 1981)

$$
B_n = \frac{d \ln n_{\rm tot}}{d \ln E}
$$

Large if multiplicity of high energy particles rises very fast, **zero in case of scaling**

$$
B_{\lambda} = -\frac{1}{X_0} \frac{d\lambda_{\rm int}}{d\ln E}
$$

Large if cross section rises rapidly with energy

Note: $D_{10} = \log(10)D_e$

2 Modeling hadronic interactions at high energy

Expectations from uncertainty relation

Assumptions:

- protons built up of partons
- partons liberated in collision process
- partons fragment into hadrons (pions, kaons,...) after interaction
- interaction viewed in c.m. system (other systems equally possible)

Heisenberg uncertainty relation

$$
\Delta x \, \Delta p_x \simeq 1
$$

$$
\langle p_{\parallel}\rangle\sim\Delta p_{\parallel}\approx\frac{1}{R'}\approx\frac{1}{5}E_{p}
$$

Longitudinal momenta of secondaries Transverse momenta of secondaries

$$
\langle p_{\parallel}\rangle\sim\Delta p_{\parallel}\approx\frac{1}{R'}\approx\frac{1}{5}E_p \qquad\qquad\qquad\langle p_{\perp}\rangle\sim\Delta p_{\perp}\sim\frac{1}{R}\approx200\,\mathrm{MeV}
$$

QCD-inspired interpretation: color flow model

One-gluon exchange: two color fields (strings)

Simplest case: e⁺e⁻ annihilation into quarks

$$
V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + \lambda r
$$

String fragmentation

Kinematic distribution of secondary particles

Ansatz

- Lorentz-invariant for transformations along string
- Transverse momenta result of vacuum fluctuations

$$
dN = f(p) \delta(p^2 - m^2) d^4p
$$

\n
$$
= f(p) \frac{d^3p}{2E}
$$

\n
$$
= \frac{1}{2} f(p) d^2p_{\perp} \frac{dp_{\parallel}}{E}
$$

\n
$$
= \frac{1}{2} f(p) d^2p_{\perp} \frac{dp_{\parallel}}{E}
$$

\n
$$
= \frac{1}{2} f_{\perp}(p_{\perp}) d^2p_{\perp} f_{\parallel}(y) dy
$$

\n
$$
\sim \exp(-\beta p_{\perp}^2) d^2p_{\perp} f_{\parallel}(y) dy
$$

\n
$$
\beta^{-1} \dots \text{effective temperature}
$$

Final state particles: two-string model

Rapidity and pseudorapidity

Rapidity

$$
y = \frac{1}{2} \ln \frac{E + p_{\parallel}}{E - p_{\parallel}} = \ln \frac{E + p_{\parallel}}{m_{\perp}}
$$

 $m_{\perp} =$ $\sqrt{2}$ Transverse mass $m_\perp = \sqrt{m^2 + p_\perp^2}$

Rapidity of massless particles

$$
y = \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta} = -\ln \tan \frac{\theta}{2}
$$

Experiments without particle identification: pseudorapidity

$$
\eta=-\ln\tan{\theta\over2}
$$

Standard color flow and final state particles

Other predicted color flow configurations

Particle production spectra (i)

Fluctuations: Generation of sea quark anti-quark pair and leading/excited hadron Leading particle effect

Particle production spectra (i)

10

Fluctuations: Generation of sea quark anti-quark pair and leading/excited hadron

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

102 GeV

29

Particle production spectra (ii)

Interaction of hadrons with nuclei

Glauber approximation:

$$
\sigma_{\text{inel}} = \int d^2 \vec{b} \left[1 - \prod_{k=1}^A \left(1 - \sigma_{\text{tot}}^{NN} T_N (\vec{b} - \vec{s}_k) \right) \right] \approx \int d^2 \vec{b} \left[1 - \exp \left\{ -\sigma_{\text{tot}}^{NN} T_A (\vec{b}) \right\} \right]
$$

$$
\sigma_{prod} \approx \int d^2 \vec{b} \left[1 - \exp \left\{ - \sigma_{\text{ine}}^{NN} T_A(\vec{b}) \right\} \right]
$$

Coherent superposition of elementary nucleonnucleon interactions

String configuration for nucleus as target

Transition from intermediate to high energy

Intermediate energy:

- *E*lab < 1,500 GeV
- *E*cm < 50 GeV
- dominated by valence quarks

$$
\text{Lifetime of fluctuations } \quad \Delta t \approx \frac{1}{\Delta E} = \frac{1}{\sqrt{p^2 + m^2} - p} = \frac{1}{p(\sqrt{1 + m^2/p^2} - 1)} \approx \frac{2p}{m^2}
$$

High energy regime:

- *E*lab > 21,000 GeV
- E_{cm} > 200 GeV
- dominated by gluons and sea quarks

Transition from intermediate to high energy

Intermediate energy:

- *E*lab < 1,500 GeV
- *E*cm < 50 GeV
- dominated by valence quarks

$$
\text{Lifetime of fluctuations } \quad \Delta t \approx \frac{1}{\Delta E} = \frac{1}{\sqrt{p^2 + m^2} - p} = \frac{1}{p(\sqrt{1 + m^2/p^2} - 1)} \approx \frac{2p}{m^2}
$$

High energy regime:

- *E*lab > 21,000 GeV
- E_{cm} > 200 GeV
- dominated by gluons and sea quarks

Scattering of quarks and gluons: jet production

Interpretation within perturbative QCD

Minijet production in interaction models

$$
\sigma_{QCD} = \sum_{i,j,k,l} \frac{1}{1 + \delta_{kl}} \int dx_1 dx_2 \int_{p_{\perp}^{\text{cutoff}}} dp_{\perp}^2 f_i(x_1, Q^2) f_j(x_2, Q^2) \frac{d\sigma_{i,j \to k,l}}{dp_{\perp}}
$$

Rapid increase of gluon density at low x

Poissonian probability distribution

Peripheral collision: only very few parton-pairs interacting

Central collision: many parton-pairs interacting

$$
P_n = \frac{\langle n_{\text{hard}}(\vec{b}) \rangle^n}{n!} \exp \left(-\langle n_{\text{hard}}(\vec{b}) \rangle \right)
$$

Need to know mean number of interactions as function of impact parameter

mean number of interactions for given impactparameter of collision

⇥

Problem: Very high parton densities (saturation)

Saturation:

- parton wave functions overlap
- number of partons does not increase anymore at low x
- extrapolation to very high energy unclear

Simple geometric criterion

Black disk scenario of high energy scattering ?

Comparison of high energy interaction models

SIBYLL 2.1: modification of minijet threshold

SIBYLL: simple geometric criterion

$$
\pi R_0^2 \simeq \frac{\alpha_s(Q_s^2)}{Q_s^2} \cdot xg(x,Q_s^2)
$$

$$
xg(x,Q^2) \sim \exp\left[\frac{48}{11 - \frac{2}{3}n_f} \ln \frac{\ln \frac{Q^2}{\Lambda^2}}{\ln \frac{Q_0^2}{\Lambda^2}} \ln \frac{1}{x}\right]^{\frac{1}{2}}
$$

No dependence on impact parameter !

SIBYLL:
$$
p_{\perp}(s) = p_{\perp}^0 + 0.065 \text{GeV} \exp\left\{0.9\sqrt{\ln s}\right\}
$$

QGSJET II: high parton density effects

Re-summation of enhanced pomeron graphs

(Ostapchenko, PLB 2006, PRD 2006) (Ostapchenko, PLB 2006, PRD 2006

EPOS 1.9 – high parton density effects eter variable. A more correct definition (when comparing with experiments) via multiplicities in given rapidity in given rapidity in given rapidity in given rapidity in give represent minimum bias, central (0%–20%), mid-central igh parton density effects in the period of $\mathbf S$

$$
b_0 = w_B \sqrt{\sigma_{\text{inel}pp}/\pi}
$$

$$
z_0 = w_Z \log s/s_M,
$$

$$
z'_0 = w_Z \sqrt{(\log s/s_M)^2 + w_M^2},
$$

Uncertainty in energy extrapolation \mathcal{L} cannot be done with the splitting, since the external legislation of the external \blacksquare Uncertainty in energy extrapolation ! distributions \mathcal{L} in \mathcal Uncertainty in energy extrapolation I partons collective hadronization Uncertainty in energy extrapolation !

also compare the experimental energy dependence of cross

and effective, phenomenological way via parameterization. So μ

3 Applications (putting things together)

Mean depth of shower maximum

⁽RE, Pierog, Heck, ARNPS 2011) 47

Elongation rates and model features

$D_{10}^{\rm had} = \ln 10 X_0 (1 - B_n - B_\lambda)$ **Elongation rate theorem** *(Linsley, Watson PRL46, 1981)* factor ~ 87 g/cm² $B_n =$ *d* ln*n*tot *d* ln*E* $B_\lambda = -\frac{1}{X_c}$ *X*0 $d\lambda_{\rm int}$ *d* ln*E* Large if multiplicity of high energy particles rises very fast, **zero in 0.4 case of scaling** Large if cross section rises rapidly with energy *p* **Elasticity**

Electron and muon numbers of showers at ground

vertical showers of 1014 *to 2014* **the 11 and 11 and** measurements due to hadronic interaction models Dominating uncertainty of composition and energy

Modification of ratio of neutral to charged pions

 $\bar{N}_{\mu} =$ $\left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$

 $\alpha =$ $ln(n_{ch})$ $ln(n_{\text{tot}})$

Particle ratios: quark counting and SU(3) symmetry !

EPOS 1.6x: higher rate of baryon-antibaryon pairs

4 What do we learn from LHC

The Large Hadron Collider (LHC)

Fixed target vs. collider experiments of the accelerated particles for high energy physics.

Scaling of interaction energies

olliders: Beam direction measurements very challenging (if not impossible) comactor beam an ection measarements very enanchomp in not impossible, Fixed target: Forward direction (beam fragmentation region) covered by detectors Colliders: Beam direction measurements very challenging (if not impossible)

Energy spectrum and collider energies

LHC data probe the region beyond the knee

!"#\$%&'()*+,%-)-./\$)'0&-.-'& !"#\$%&'()*+,%-)-./\$)'0&-.-'&

 Θ

 $\eta = -\ln \tan \frac{\theta}{2}$

2

 θ

 $\left\{\hat{C},\hat{\theta}\right\}$ LHC: Exotic scenarios for knee very unlikely, model predictions bracket LHC data on secondary particle multiplicity

(D'Enterria at al. Astropart Phys 35, 2011)

Exotic models for the knee

New physics: scaling with nucleon-nucleon cms energy

LHC data probe the region beyond the knee

Cross section measurements at LHC Intelastic Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-P
Intelastic Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-Proton-P

No big surprise given Tevatron measurements, but re-tuning of model cross sections needed

$$
\frac{\Delta p}{p} = \xi > 5 \times 10^{-6}
$$

$$
\sigma_{ATLAS} = 60.3 \pm 0.05 \pm 0.5 \pm 2.1 mb
$$

PERIODE CONSTRUCTS (1989) **DESCRIPTION** ?*1&"1@A* 789:* 739=* 7;9=* 7:9;* ;>9:* *(CMS, DIS Workshop, Brookhaven)*

$$
\sigma_{\rm ALICE}=72.7\pm1.1\pm5.1\rm{mb}
$$

LHC data: Baryon production lower than assumed

(Riehn et al., 2012)

5 What do we learn from air showers

Cross section measurement with air showers

Universality features of high-energy showers (i)

Simulated shower profiles Profiles shifted in depth

Depth of *X1* and *Xmax* strongly correlated, use *Xmax* for analysis

Selection of protons: select very deep showers

High-energy frontier: proton-air cross section

(Pierre Auger Collab. 1107.4804, Phys. Rev. Lett. 2012)

The energy spectrum from surface detector and support of the energy surface detector of the surface detector data (I) slant depth [g/cm²] **Several shower observables**

Discrepancy: shower profile and muons at ground J. ALLEN *et al.* INTERPRETATION OF AUGER OBSERVATORY SURFACE DETECTOR SIGNAL

Enhancement of muon number in air showers

1 Baryon-Antibaryon pair production (Pierog, Werner)

- Baryon number conservation
- Low-energy particles: large angle to shower axis
- Transverse momentum of baryons higher
- **• Enhancement of mainly low-energy muons**

2 Leading particle effect for pions *(Drescher, Ostapchenko)*

- Leading particle for a π could be ρ^0 and not π^0
- Decay of ρ^0 almost 100% into two charged pions

3 Chiral symmetry restoration (Farrar, Allen)

- **•** Proton primaries, applies above energy threshold
- Pion production suppressed relative to baryons
- Large inelasticity of the events
- Faster increase of total cross section (reduction of fluctuations)

Leading particle for π-air interactions

Summary of role of hadronic interactions

Electrons

Muon production at large lateral distance

Muon observed at 1000 m from core

(Maris et al. ICRC 2009)