

The Physics of Cosmic Rays – New Results

Ralph Engel Karlsruhe Institut für Technologie (KIT)

Re-scaled flux: several breaks in power law

Comparison of element abundances

Correlation with first ionization potential

Detailed analysis shows correlation with first ionization potential:

Acceleration of particles from dust grains ?

Injection problem:

shock acceleration only efficient for particles of ~GeV or higher energy

Fluxes of individual elements

Power law also found for individual elements

Index of power law almost identical (heavier elements harder spectra?)

Relative abundance of nuclei $H : He : Z = 6-9 : 10-20 : 21-30$ 1 : 0.38 : 0.22 : 0.15 : 0.4

Standard model of galactic cosmic rays

$$
Q(E) \sim \left(\frac{E}{Z}\right)^{-p} \qquad p=2...2.3
$$

Local energy spectrum

Source spectra

$$
\frac{\mathrm{d}N}{\mathrm{d}E} \sim \left(\frac{E}{Z}\right)^{-(p+\delta)} \qquad \delta = 0.4 \dots 0.7
$$

Traversed column depth

$$
\lambda_{\rm esc} \sim \lambda_0 \left(\frac{E}{Z}\right)^{-\delta} \qquad \lambda_0 \approx 10 \, \text{g/cm}^2
$$

Typical lifetime

\n
$$
\tau_{\rm esc} \sim 2 \times 10^7 \, \text{yr}
$$
\n
$$
\tau_{\rm disk} \approx 10^6 \, \text{yr}
$$

Problems discussed up to now:

Energy range beyond the knee (anisotropy, column depth, transition from galactic to extragalactic sources)

Breakdown of Leaky Box model

Features of the energy spectra of elements

PAMELA-Detektor

Payload for Antimatter Matter Exploration and Light nuclei Astrophysics

Launch June 15, 2006, 350- 600 km

Aim: Light elements in energy range 80 MeV to about 7x10¹¹ eV (700 GeV)

Cross section of PAMELA detector

Event displays of measured events

Clear signal in em. calorimeter

11

Additional signal in neutron detector

PAMELA results

(Sparvioli, ISVHECRI 2012) 12

Energy spectra are not simple power laws

Evidence for harder helium spectrum

Crossing of p and He fluxes cannot be explained with shock acceleration

Structures above the knee (i) Author's personal copy

Structures above the knee (ii)

16

Independent measurement: Tunka Cherenkov array

17

Structures above the knee (iii) Tunka-133: all-particle energy spectrum

Î **hardening clearly** Found by several experiments Structure of dip and additional knee (including Yakutsk and IceTop)

> $\left| \right|$ **compression ancient** Interpretation unclear

ısys(E) = 8% at E= 6 1015 eV from QUEST experiment *(Kuzmichev, ECRS 2012, Moscow)*

Models that predict such features of the spectrum $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L$ 0&\$&(3,\$\$,%;((

N*>.%,(B;(?&@(<+,(="''*35,(/"0*2*!&\$*"#("2(\$+,(E*#>5,(E".%!,(/"0,5("2(\$+,(1#,,(&''./*#>(\$+&\$(

end values for different environments

+,5*./(�("T4>,#(=%,0"/*#&\$,(*#(\$+,(2*%'\$(�(',!"#0(=,&1'("2(\$+,(*#\$,#'*\$4;(<+,(&3'"5.\$,(*Caprioli, Blasi, Amato, astro-ph/1007.1925* $\frac{1}{\sqrt{16}}$, $\frac{1}{\sqrt{16}}$, $\frac{1}{\sqrt{16}}$ and $\frac{1}{\sqrt{16}}$...

Acceleration of particles at the sun

Direct detection of particles from shock acceleration

Aufnahme mit LASCO (SOHO)

Particles/(cm²sr-MeVinucleon)

⁽Mewaldt et al., A.I.P. Conf. Proc. 598 (2001) 165)

Electron and positron excess

Electron flux measurements

Positron to electron ratio

Acceleration: Electrons much more abundant than positrons

Symmetric production

$$
p + p_{\text{ISM}} \longrightarrow \pi^0 + X
$$

$$
\pi^0 \longrightarrow e^+ e^-
$$

Expectation from diffusion model

Expectation in standard diffusion model

Leaky box model from lecture 1:

$$
\frac{\partial N(E)}{\partial t} = -\frac{1}{\tau_{\rm esc}} N(E) + Q(E)
$$

Include energy losses (bremsstrahlung important for e⁺ and e⁻)

$$
\frac{\partial N_{e^\pm}}{\partial t}=-\frac{N_{e^\pm}}{\tau_{\rm esc}}-\frac{N_{e^\pm}}{\tau_{\rm loss}}+Q_{e^\pm}
$$

$$
\begin{array}{lcl} N_{e^\pm}&=&\tau_{\rm{loss}}\;Q_{e^\pm}\\ &=&\frac{\tau_0}{E}\;Q_{e^\pm} \end{array}
$$

 $Q_{e^-} \sim E^{-p}$

$$
\mathcal{Q}_{e^+} \sim \mathsf{PISM}~N_p(E) \sim E^{-p-\delta}
$$

$$
N_{e^-}(E) \sim E^{-p-1}
$$

$$
N_{e^+}(E)\sim E^{-p-\delta-1}
$$

Production in pulsars not too far from us

MHD condition: $\vec{E} = \vec{V} \times \vec{B}$ $R \simeq 10 \text{km}$ $T \simeq 10...100$ ms $B \simeq 10^9 \,\text{T} \ (= 10^{13} \,\text{G})$ \sim *Ze* $\omega r^2 B$ $\mathcal{L}_{\text{IIIAA}}$

25

Production in acceleration regions

Example: Interpretation as Dark Matter signal Context: Indirect search for dark matter

TeV $\chi^{0}\chi^{0}\longrightarrow \tau^{+}\tau^{-}$ Preferred annihilation channel $\qquad \chi^0 \chi^0 \longrightarrow \tau^+ \tau^- \qquad \qquad$ (Particle of 3 TeV mass)

Cross-check: Antiproton flux

 $\mathbf{N}_{\mathbf{z}}$ and the pure discussed calculations for a pure set of $\mathcal{N}_{\mathbf{z}}$ \mathcal{N} is a secondary product of \mathcal{N} in \mathcal{N} is an \mathcal{N} in \mathcal{N} is an \mathcal{N} is $\sqrt{n}n$ (Dorticle has to be leptophile) No excess found in channel $\chi^0 \chi^0 \longrightarrow \bar{p} p$ (Particle has to be leptophile)

Anisotropy measurements

Anisotropy detection (i)

Milagro: Relative excess of 4-6 10⁻⁴, more than 10 sigma significance Energy of cosmic rays $\sim 10^{13}$ eV = 10 TeV (Lamor radius < 10^{-2} pc)

Anisotropy detections (ii)

Milagro

http://people.roma2.infn.it/~aldo/RICAP09_trasp_Web/Vernetto_ARGO_RICAP09ar.pdf

Anisotropy detections (iii)

Anisotropy due to asymmetry of heliosphere ?

Solar system moves with 220 km/s about gal. center 20 km/s relative to ISM

$$
\Phi_{\text{Earth}}(E) = \frac{E^2 - m^2}{(E + Z \cdot V_{\text{pot}})^2 - m^2} \Phi_{\text{ISM}}(E + Z \cdot V_{\text{pot}})
$$

 $V_{\text{pot}} \approx 400...750$ GV

Interpretation of the data at the highest energies

Anisotropy of arrival direction distribution

Closest Active Galactic Nucleus: Centaurus A

RADIO

Moon for comparison of apparent size

'COMPOSITE'

Standard model of extragalactic cosmic rays ?

• GZK suppression of flux confirmed

- Particles accelerated in astrophysical environments (exotic sources not dominating)
- Sources related to AGNs or distributed similar to AGNs
- More than 80% of particles should be protons (dip model)

Auger data on shower profiles

Example: event measured by Auger Collab. 38

Iron fraction

Mean depth of shower profiles and shower-toshower fluctuations as measure of composition

Fluctuations of depth of shower maximum

Auger Observatory: Composition data

Upper end of source energy spectrum seen ?

Current status of correlation with AGNs UUFFEIR STATUS OF COFFEIATION

Auger Observatory (2011)

Differential Auger Signal Science publication: 9/13 events ~69% correlated, expectation for isotropy 21%

Overall picture of cosmic ray data

The magnetar model

many galactic magnetars

extragalactic (extreme) magnetar

Centaurus A as dominating local source

Inclusive flux of secondary particles Example: Waxman-Bahcall limit

Example: Waxman-Bahcall neutrino limit (i)

Maximum ``reasonable''neutrino flux due to interaction of cosmic rays in sources

Assumptions:

- sources accelerate only protons (other particles yield fewer neutrinos)
- injection spectrum at sources known (power law index -2)
- each proton interacts once on its way to Earth (optically thin sources)

Proton flux at sources

$$
\Phi_p(E_p) = \frac{dN_p}{dE_p dA dt d\Omega} = A E_p^{-\alpha}
$$

Master equation

$$
\Phi_{\rm v}(E_{\rm v}) = \int \frac{dN_{\rm v}}{dE_{\rm v}} (E_p) \Phi_p(E_p) \, dE_p
$$

Number of neutrinos produced in interval *E*ν*...E*ν*+dE*ν, per proton interaction

Spectrum weighted moments (i)

$$
\Phi_{\rm v}(E_{\rm v}) = \int \frac{dN_{\rm v}}{dE_{\rm v}} (E_p) \Phi_p(E_p) dE_p
$$

Aim: re-writing of equation for scaling of yield function

Spectrum weighted moments (ii)

$$
\Phi_{\rm v}(E_{\rm v}) = \int \frac{dN_{\rm v}}{dE_{\rm v}} (E_p) \Phi_p(E_p) \, dE_p
$$

substitutions (I) - (3)
$$
\Phi_{\mathbf{v}}(E_{\mathbf{v}}) = \int_0^1 x^{\alpha - 1} \frac{dN_{\mathbf{v}}}{dx} A E_{\mathbf{v}}^{-\alpha} dx
$$

Example: Waxman-Bahcall neutrino limit (ii)

Relevant interaction & decay chain (33% of all interactions with small *Ecm*)

$$
p + \gamma \longrightarrow n \pi^{+} \longrightarrow n \mu^{+} \nu_{\mu} \longrightarrow n e^{+} \nu_{e} \bar{\nu}_{\mu} \nu_{\mu}
$$

\n20% of p
\nenergy
\n
$$
\Phi_{\nu_{\mu}}(E_{\nu_{\mu}}) = 0.33 \times 0.2 \times 0.25 A E_{\nu_{\mu}}^{-2}
$$
\n
$$
p_{\nu_{\mu}}(E_{\nu_{\mu}}) = 0.33 \times 0.2 \times 0.25 A E_{\nu_{\mu}}^{-2}
$$