

The Physics of Cosmic Rays – New Results

Ralph Engel Karlsruhe Institut für Technologie (KIT)

Re-scaled flux: several breaks in power law

Comparison of element abundances

(Gaisser & Stanev, NPA 2006)

Correlation with first ionization potential

Detailed analysis shows correlation with first ionization potential:

Acceleration of particles from dust grains ?

Injection problem:

shock acceleration only efficient for particles of ~GeV or higher energy

Fluxes of individual elements

Power law also found for individual elements

Index of power law almost identical (heavier elements harder spectra?)

Relative abundance of nuclei H : He : Z= 6-9 : 10-20 : 21-30 I : 0.38 : 0.22 : 0.15 : 0.4

Standard model of galactic cosmic rays

$$Q(E) \sim \left(\frac{E}{Z}\right)^{-p} \qquad p = 2\dots 2.3$$

Source spectra

$$\frac{\mathrm{d}N}{\mathrm{d}E} \sim \left(\frac{E}{Z}\right)^{-(p+\delta)} \qquad \delta = 0.4...0.7$$

Traversed column depth

$$\lambda_{\rm esc} \sim \lambda_0 \left(\frac{E}{Z}\right)^{-\delta} \qquad \lambda_0 \approx 10 \,{\rm g/cm^2}$$

$$\tau_{\rm esc} \sim 2 \times 10^7 \, {\rm yr} \qquad \tau_{\rm disk} \approx 10^6 \, {\rm yr}$$

Problems discussed up to now:

Energy range beyond the knee (anisotropy, column depth, transition from galactic to extragalactic sources)

Breakdown of Leaky Box model

Features of the energy spectra of elements

PAMELA-Detektor

Payload for Antimatter Matter Exploration and Light nuclei Astrophysics

Launch June 15, 2006, 350- 600 km

Aim: Light elements in energy range 80 MeV to about 7x10¹¹ eV (700 GeV)

Cross section of PAMELA detector

Event displays of measured events

Clear signal in em. calorimeter

Additional signal in neutron detector

PAMELA results

(Sparvioli, ISVHECRI 2012)

Energy spectra are not simple power laws

Evidence for harder helium spectrum

Crossing of p and He fluxes cannot be explained with shock acceleration

Structures above the knee (i)

Structures above the knee (ii)

16

Independent measurement: Tunka Cherenkov array

17

Structures above the knee (iii)

Structure of dip and additional knee found by several experiments (including Yakutsk and IceTop)

Interpretation unclear

(Kuzmichev, ECRS 2012, Moscow)

Models that predict such features of the spectrum

10⁻²

10⁰

 10^{2}

 $p_* = p/mc$

104

10⁶

108

Caprioli, Blasi, Amato, astro-ph/1007.1925

Acceleration of particles at the sun

Direct detection of particles from shock acceleration

Aufnahme mit LASCO (SOHO)

Particles((cm²sr-MeV/nucleon)

⁽Mewaldt et al., A.I.P. Conf. Proc. 598 (2001) 165)

Electron and positron excess

Electron flux measurements

Positron to electron ratio

Acceleration: Electrons much more abundant than positrons

Symmetric production

$$p + p_{\text{ISM}} \longrightarrow \pi^0 + X$$

 $\pi^0 \longrightarrow e^+ e^-$

Expectation from diffusion model

Expectation in standard diffusion model

Leaky box model from lecture 1:

$$\frac{\partial N(E)}{\partial t} = -\frac{1}{\tau_{\rm esc}} N(E) + Q(E)$$

Include energy losses (bremsstrahlung important for e⁺ and e⁻)

$$\frac{\partial N_{e^{\pm}}}{\partial t} = -\frac{N_{e^{\pm}}}{\tau_{\rm esc}} - \frac{N_{e^{\pm}}}{\tau_{\rm loss}} + Q_{e^{\pm}}$$

$$N_{e^{\pm}} = au_{\mathrm{loss}} Q_{e^{\pm}} = rac{ au_0}{E} Q_{e^{\pm}}$$

 $Q_{e^-} \sim E^{-p}$

 $Q_{e^+} \sim \rho_{\text{ISM}} N_p(E) \sim E^{-p-\delta}$

$$N_{e^-}(E) \sim E^{-p-1}$$

$$N_{e^+}(E) \sim E^{-p-\delta-1}$$

Production in pulsars not too far from us

MHD condition: $\vec{E} = \vec{V} \times \vec{B}$ $E_{max} \sim Ze |\vec{E}| d$ $R \simeq 10 \text{ km}$ $T \simeq 10...100 \text{ ms}$ $B \simeq 10^9 \text{ T} (= 10^{13} \text{ G})$

(Hooper et al. JCAP (2009) 025) 2

Production in acceleration regions

Example: Interpretation as Dark Matter signal

 $\chi^0\chi^0\longrightarrow au^+ au^-$

Preferred annihilation channel

(Particle of 3 TeV mass)

Cross-check: Antiproton flux

No excess found in channel

 $\chi^0 \chi^0 \longrightarrow \bar{p}p$ (Particle has to be leptophile)

Anisotropy measurements

Anisotropy detection (i)

Milagro: Relative excess of 4-6 10⁻⁴, more than 10 sigma significance Energy of cosmic rays ~10¹³ eV = 10 TeV (Lamor radius < 10⁻² pc)

Anisotropy detections (ii)

Milagro

http://people.roma2.infn.it/~aldo/RICAP09_trasp_Web/Vernetto_ARG0_RICAP09ar.pdf

Anisotropy detections (iii)

Anisotropy due to asymmetry of heliosphere ?

 $V_{\rm pot} \approx 400...750\,{\rm GV}$

Solar system moves with 220 km/s about gal. center 20 km/s relative to ISM

Interpretation of the data at the highest energies

Anisotropy of arrival direction distribution

Closest Active Galactic Nucleus: Centaurus A

RADIO

Moon for comparison of apparent size

COMPOSITE

Standard model of extragalactic cosmic rays ?

• GZK suppression of flux confirmed

- Particles accelerated in astrophysical environments (exotic sources not dominating)
- Sources related to AGNs or distributed similar to AGNs
- More than 80% of particles should be protons (dip model)

Auger data on shower profiles

Example: event measured by Auger Collab.

Fluctuations of depth of shower maximum

Mean depth of shower profiles and shower-toshower fluctuations as measure of composition

Auger Observatory: Composition data

Upper end of source energy spectrum seen ?

Current status of correlation with AGNs

Auger Observatory (2011)

Science publication: 9/13 events ~69% correlated, expectation for isotropy 21%

Overall picture of cosmic ray data

The magnetar model

 $R \simeq 10 \text{ km}$ $T \simeq 10 \dots 100 \text{ ms}$ $B \simeq 10^9 \text{ T} \ (= 10^{13} \text{ G})$

Beam of

many galactic magnetars

High-energy part: extragalactic (extreme) magnetar

Centaurus A as dominating local source

Inclusive flux of secondary particles Example:Waxman-Bahcall limit

Example: Waxman-Bahcall neutrino limit (i)

Maximum ``reasonable''neutrino flux due to interaction of cosmic rays in sources

Assumptions:

- sources accelerate only protons (other particles yield fewer neutrinos)
- injection spectrum at sources known (power law index -2)
- each proton interacts once on its way to Earth (optically thin sources)

Proton flux at sources

$$\Phi_p(E_p) = \frac{dN_p}{dE_p dA dt d\Omega} = A E_p^{-\alpha}$$

Master equation

$$\Phi_{\mathbf{v}}(E_{\mathbf{v}}) = \int \frac{dN_{\mathbf{v}}}{dE_{\mathbf{v}}}(E_p) \, \Phi_p(E_p) \, dE_p$$

Number of neutrinos produced in interval $E_{v}...E_{v}+dE_{v}$, per proton interaction

Spectrum weighted moments (i)

$$\Phi_{\mathbf{v}}(E_{\mathbf{v}}) = \int \frac{dN_{\mathbf{v}}}{dE_{\mathbf{v}}}(E_p) \, \Phi_p(E_p) \, dE_p$$

Aim: re-writing of equation for scaling of yield function

Spectrum weighted moments (ii)

$$\Phi_{\mathbf{v}}(E_{\mathbf{v}}) = \int \frac{dN_{\mathbf{v}}}{dE_{\mathbf{v}}}(E_p) \, \Phi_p(E_p) \, dE_p$$

substitutions (1) - (3)
$$\Phi_{\nu}(E_{\nu}) = \int_0^1 x^{\alpha - 1} \frac{dN_{\nu}}{dx} A E_{\nu}^{-\alpha} dx$$

$$\Phi_{v}(E_{v}) = \left[\int_{0}^{1} x^{\alpha-1} \frac{dN_{v}}{dx} dx\right] A E_{v}^{-\alpha}$$
Proton flux
(but with neutrino energy)
(but with neutrino energy)
(but with neutrino energy)

Example: Waxman-Bahcall neutrino limit (ii)

Relevant interaction & decay chain (33% of all interactions with small E_{cm})

$$p + \gamma \longrightarrow n \pi^{+} \longrightarrow n \mu^{+} \nu_{\mu} \longrightarrow n e^{+} \nu_{e} \bar{\nu}_{\mu} \nu_{\mu}$$

$$20\% \text{ of } p$$

$$energy$$

$$each particle has 25\% \text{ of the}$$

$$energy \text{ of the } \pi^{+}$$

$$\Phi_{\nu_{\mu}}(E_{\nu_{\mu}}) = 0.33 \times 0.2 \times 0.25 AE_{\nu_{\mu}}^{-2}$$